Teaching a neural network to count:

reinforcement learning with “social scaffolding”
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Background

Counting skill is a foundation for more sophisticated math
concepts. The current project tries to capture a sub-task of
counting: given an array of objects, touch every object exactly
once, which is related to the one-to-one principle [1].

Although some have considered aspects of counting principles
as Innate, we examine how these skills might be learned from
social support, such as enriched feedback and teacher
demonstration.
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In every trial, a one-dimensional object array is randomly
initialized on the right-hand side of the agent’s initial
fixation point. The goal is to make a series of movements,
touching every object exactly once in order and then touch
“‘done” in no more than 100 steps. The model has a limited
visual field. At each time step, the model can make a virtual
‘eye+hand’ movement determining its visual input at the
next time step and where it is touching. The input vector
encodes objects in a viewer-centered frame, represented by
some Gaussian bumps (see model environment).

The model estimates action values with a one-layered
heural network with softmax non-linearity, using the Q-
learning rule [2], listed above. The model can be
augmented with an experience replay buffer [3] and a
target network [4] (also see [5]).

Compare different teaching strategies
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Reward policy & Teaching strategies

Error types shown in graphs:

1: Stop early - say “done” when there exists an untouched object
2: Double touch - touching the same object twice in a trial

3: Skip - touching the (k+1)th object before touching the kth object

Note: These errors are not mutually exclusive. Also, touching empty
space is not in itself an error though it can lead to delay in receipt of
reward.

Teaching strategies:

There is always a final reward on successful completion. We also
considered two types of “social scaffolding” and their combination:
1. Intermediate reward: Reward the agent for touching the correct
hext object. The reward magnitude is one-half of the final reward.

2. Demonstration: Force the agent to execute the maximally
efficient action sequence and provide the corresponding reward. In
this condition, we alternate demonstration trials and the regular
self-exploration trial.

3. Intermediate reward + Demonstration: Combination of (1) and (2)

Summary

Social scaffolding made learning easier, because:
- Intermediate feedback makes the task more supervised.
- Demonstration forces exposure to the optimal solution.

These results provide insights about how social scaffoldings support
learning from a computational perspective. Further research will
extend these explorations to multi-layer recurrent architectures and
more complex task settings.
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Simulation source code:
https://github.com/QihongL/mathCognition_PDP_RL
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