Performance Optimization is Insufficient for Building Accurate Models for Neural Representation
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Previous studies have found a strong correlation
between the optimization of the image classifica-
tion performance of machine learning models and
oreater visual neural representation (Fig. 1). How-

ever, our results indicate that performance opti-
mization may eventually lead to systematic devi-
ation from human brain representation. This sug-
cests that additional constraints informed by visual
neuroscience are critical for building better compu-
tational models.
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Figure 1: Performance optimization leads to more predictive mod-

els of the visual neural pathway [3].

Hypothesis

Similarity to Brain Representation

Classification Performance

Figure 2: Hypothesized inverted-U-shaped relationship between

classification performance and similarity to brain representation.
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Figure 3: The correlation between fMRI data from selected Regions of Interest and the hidden states of AlexNet (cnn) and Resnet-50

(resnet). The indices represent layer numbers. For ResNet-50, we chose 8 roughly evenly-spaced layers across the network architecture.

fMRI data were collected using an experiment in which participants performed a one-back task on ImageNet images [2].

AlexNet vs. ResNet-50

ImageNet-Trained Models

« AlexNet: an 8-layer convolutional neural network

« ResNet-50: a 50-layer residual neural network
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Figure 4: A “skip connection” adds the activity vector of the first
layer to the third layer in this residual block.

Classification Performance
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Figure 5: ResNet-50 is significantly more optimized than AlexNet
on ImageNet data [1].

Predicting Neural Network Activity

Linear Mapping

« For both models, 1000 random activation units were
chosen from 8 evenly-spaced layers.

« Linear models were trained to map the {MRI
responses to the hidden state of each unit chosen

from AlexNet and ResNet-50 (e.g., Fig. 6).
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Figure 6: An example activation unit from cnn8 predicted by the

fMRI responses from all Regions of Interest combined |[2].

« The linear prediction performance of ResNet-50 is
significantly worse than that of AlexNet for 7 of 8
layer-to-layer comparisons (Fig. 3).

Conclusion

« ResNet-50 is an inferior model for visual neural
representation, in comparison to AlexNet.

« Performance optimization can lead to deviation
from brain representation, especially when the
model exceeds human-level performance.

« Performance optimization alone is insufficient for
building accurate computational models of the

brain.
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