Patience is a virtue: Learning when to encode/recall episodic memories

1. Department of Psychology and Princeton Neuroscience Institute, Princeton University; 2. Computer Science Department, Princeton University

(): How should encoding and retrieval processes
be parameterized to support event prediction?

We found that a certain amount of waiting, for
both encoding and retrieval, reduces the prob-
ability of false recall, which boosts the extent
to which episodic memory benefits event under-
standing.

An episodic neural network

Cortex: a recurrent neural network (LSTM)

= predicts the next event, 5441

= sends 1%; to hippocampus (EM) to configure the
parameters of the LCA (fig 1 B)

Hippocampus (EM)

« recall: given the current cortical pattern ¢; and
Y, return a memory, my, to the cortex
= the recall process is governed by a LCA (fig 1 B).

» encode: save the cortical pattern, ¢

Figure 1: A) A recurrent neural network with episodic
memory (EM); B) A leaky, competing accumulator
(LCA). For a memory (e.g. m;) to be recalled, it needs to be
highly activated to counteract the leak term, and outcompete
other memories (e.g. m;). The level of leak and
competition are controlled by cortex via U;
Encoding new memories = adding new nodes to LCA.
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A recall/no-recall task

 Encoding phase: Generate £ event sequences
from the event graph (fig 2 A).
= 'To generate an sequence, we randomly sample a
“situation”, which defines a path on the event graph.
« Bach transition on the graph is controlled by a particular
feature of the situation. Thus, knowing the feature values
makes it possible to predict what will happen next.

- Test phase: Flush the cortical activity (the
LLSTM hidden state). With p = .5, present a
previously seen event sequence with a different
order (a recall trial, e.g. fig 2 B); otherwise,
present a new sequence (a no-recall trial).
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Figure 2: A) Sample an event sequence (in brown) from the
event generative model; B) A recall trial.

After training, the model learned to use episodic
memories to support event prediction (fig 3), sug-
gesting that feature values (e.g. weather = rainy) of
the situation are encoded in the episodic memories.
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Figure 3: A) Prediction accuracy is higher for recall trials; B)
Target memories are more activated than lures.

Waiting to recall

Typically, the model needs to choose between...

» recalling early, with more risk of recalling lures

« waiting to recall, but the prediction benefit of
recall diminishes over time.

When the need to predict is delayed (fig 4), the opti-
mal strategy is to wait to recall until the need to pre-
dict arises; recalling earlier carries only risk (of false
recall) but no reward. We found that the model
learned to wait to recall (fig 5) to avoid recalling
lures.
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Figure 4: For the delayed condition, initially, the model
receives observations of the current situation without being
queried about what happens next.
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Figure 5: The model learned to wait to recall when prediction
demand is delayed. A) The leak value (a LCA parameter
controlled by the LSTM) over time. Leak governs how likely
memories are to be recalled. Smaller leak values indicate
stronger recall; B) The recall strength of the target memories.
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Figure 6: Prediction accuracy, no delay vs. delay. Time
courses are aligned to prediction demand onset.
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Encode at event boundaries

We considered three encoding regimes (fig 7 A.):

a. non-overlapping small chunks: store
non-overlapping memories at the sub-event level

b. cumulative: memories have
temporally-nested structure within events

c. encode at event boundaries: wait until
the end of event and store a single memory

We found models that encode at event boundaries
performed the best at subsequent recall (fig 8).
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Figure 7: A) The resulting memory chunks under the three
encoding regimes; B) “Small-chunk encoding” might cause
subsequent false recall (boxed in red). When the agent has
partial knowledge about the current situation (e.g. location =
the house, mood = sad), lures are easier to reject if all
information is connected.
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Figure 8: Models that encode at event boundaries had better
event prediction accuracy:.

Summary

To help with event prediction, an agent should wait
to recall until prediction demand arises, and encode
at event boundaries. These results provide a nor-
mative account of the observation that the neural

signature of encoding is temporally sparse and time-
locked with event boundaries |1]|2][3].
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