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Summary
•We present a neural network that learns to use
episodic memory for event prediction.

•The learned memory-retrieval policy shows a
speed-accuracy trade-off that is sensitive to the
cost of incorrect predictions.

•Models that selectively encode at event
boundaries had fewer retrieval errors.

•Collectively, this model provides insights about
why, in real data, episodic retrieval seems to be
sensitive to prediction demand and uncertainty
[1] and why episodic encoding seems to happen
selectively at event boundaries [3, 4].

Model detail

Figure 1: A) The model architecture; B) Memories are a set
of laterally competing evidence accumulators.

Cortex is a recurrent neural network (LSTM) that
predicts the upcoming state.
Hippocampus represents memories as a set of ev-
idence accumulators. Each memory is a previously
saved cortical pattern.
• Retrieval is an evidence-accumulation process
that determines which memory to retrieve.
Evidence is proportional to the similarity between
the current state and stored memory.

•The retrieval control layer controls the
feed-forward weights and the level of lateral
competition between different memories.

• Encoding a new memory corresponds to adding
a new accumulator.

The model is trained with reinforcement learning.
The reward is positive/negative if the prediction is
correct/incorrect. The model can say “don’t know”,
in which case the reward is zero.

A context-dependent event
prediction task

An event sequence is a sample path from a event
schema conditioned on a situation (fig 2). An event
schema is a graph, where each transition is con-
trolled by a particular feature of the situation (2 A).
Thus, knowing the features of the situation is useful
for event prediction.

Figure 2: A) Sample an event sequence from the schema; B)
An example trial.

Use episodic memory to predict
upcoming events

There are three conditions (inspired by [1]): during
test, the ongoing situation is ...
• recently observed (RM; recent memory)
• observed in distant past (DM; distant memory)
•new (NM; no memory)
In the DM condition, relevant information is not in
working memory, so it needs to be recalled from
episodic memory. DM prediction accuracy starts
low, and increases after episodic recall takes place.

Figure 3: Event prediction performance across the three
conditions.

Properties of the learned recall
policy

Recall is sensitive to whether information is already
in working memory (fig 4: lower recall in RM con-
dition than DM; see also fig 6). We also manipu-
lated the penalty associated with incorrect predic-
tions. When penalty is high, recall is delayed (fig 4
A vs. B) and false recall is low (fig 5), similar to a
well-established model of hippocampus [2].
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Figure 4: Memory activation in the A) low; and B) high
penalty environment.
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Figure 5: ROC analysis for the memory activation in the A)
low; and B) high penalty environment.

Figure 6: Recall is suppressed when the queried information is
in working memory (i.e. when uncertainty is low).

Encoding at event boundaries
reduces subsequent memory errors

We found models that encode at event bound-
aries performed better at subsequent recall (fig 7),
compared to models that also encode episodic mem-
ories within an event sequence (i.e. cumulative
encoding), because encoding within an event se-
quence leads to more confusable memories (fig 8).

Figure 7: Event prediction accuracy for models that encode at
event boundaries ; vs. models that also encode within an
event sequence.

Figure 8: A) The resulting memory chunks under the two
encoding regimes; B) Encoding within an event sequence
might cause subsequent false recall. Connecting all
information make lures easier to reject.
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